Power Rule for Integration:

So what happens if n = -1?

DEFINITION: The <i>natural logarithmic function</i> is defined as		
This means		
Pictures:	Values:	
1) Graph of $y = 1/x$	$\ln(1/2) =$	
	ln1 =	
	ln 2 =	
	ln e =	
	ln 4 =	
2) Graph of $y = \ln x$		
Properties of the natural logarithm function:		
1. Domain:	Range:	
2. Function is continuous, increasing, and one-to-one		

3. Graph is concave _____.

I. Pre-calculus

Properties of Logarithms:	
1. $\ln(1) = $	
2. $\ln(e) = $	
2. $\ln(ab) =$	-
3. $\ln(a/b) =$	_
4. $\ln(a^n) =$	_

-examples- Expand each logarithmic expression

1.
$$\ln(\sqrt{3x+2})$$
 2. $\ln\left(\frac{xy^2}{\sqrt[3]{z}}\right)$

-examples- Condense the logarithmic expression $\ln x - 3 \ln y - \ln 2$

-example- Simplify each expression (no calculator):

1.
$$\ln(e^3)$$

2.
$$\ln\left(\frac{1}{\sqrt{e}}\right)$$

Math 250 – Notes Section 5.1 – The Natural Logarithmic Function

II. Calculus

*Derivative of Natural Logarithm Function:

-example- Find the derivative of each function.

1.
$$f(x) = \ln(3x+1)$$
 2. $y = x \ln x$

3.
$$g(t) = \ln \frac{5t}{(t-4)^2}$$

4. $y = \ln(\sin^2 x)$

5. Write the equation of the line tangent to $f(x) = \frac{\ln x}{x}$ when x = e.

*Logarithmic Differentiation: The process of using logarithms to simplify a differentiation problem.

-example- Find the derivative of $y = \frac{(x-2)^2}{\sqrt{4x+1}}$ using logarithmic differentiation.

*One final note: Because the natural logarithm function is NOT DEFINED for negative numbers, you will often encounter expressions of the form $\ln(|u|)$. You may differentiate these as though the absolute value *were not there*.

-example- $y = \ln |\cos x|$